Thanks to Bodil Bluhm, Ken Dunton and Tom Weingartner for graphics

Pacific Marine Arctic Regional Synthesis Themes 1, 2 & 6: Physics, Hydrography and Contaminants

L. Cooper, J. Trefry, S. Okkonen University of Maryland Center for Environmental Science, Florida Institute of Technology, University of Alaska Fairbanks

Pach

Themes

Theme 1. Ice cover – primary production relationships, currents, winds, bathymetry

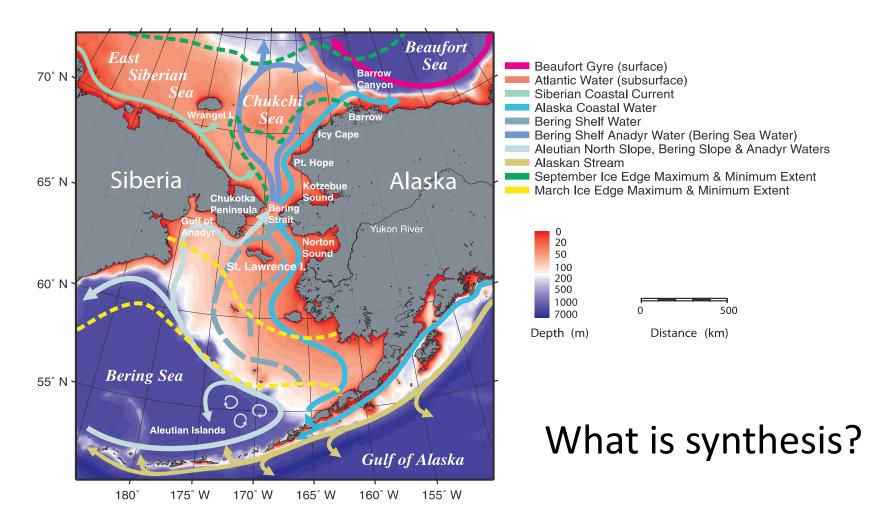
1a. Will warmer water temperatures and reduced ice cover result in an increase in primary production in Arctic seas, and if so, how will this affect the sequestration of carbon, oceanacidification and food web dynamics?

1b. What is the connectivity to local/regional biogeochemistry and physical oceanography for the Chukchi and Beaufort Sea food web?

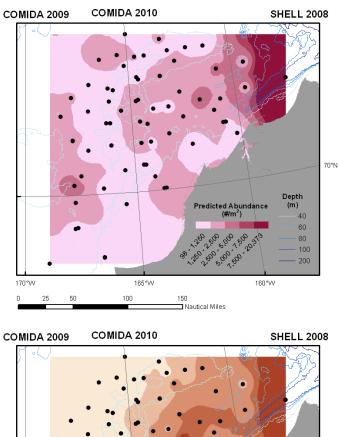
Theme 2: Phenology of biological production cycles in relation to physical environment

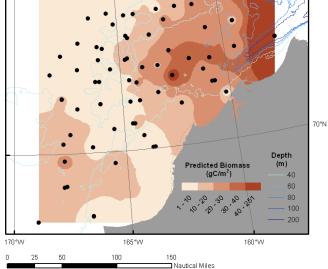
2a. How will a changing climate affect the timing, magnitude, and duration of production cycles?2b. Will changes likely result in successful colonization and replacement of arctic endemics by subarctic populations/species?

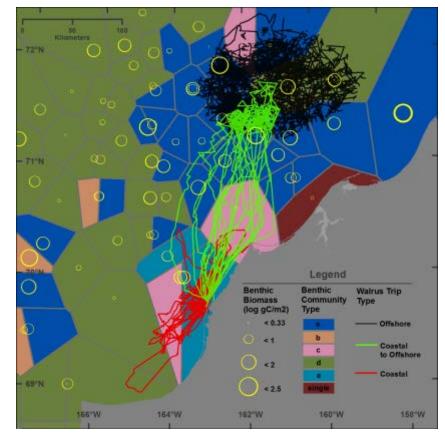
Theme 6: Chemical contaminants in sediment and biota


6a. What are the levels of chemical contaminants in sediments and seawater and how do they move through the food chain?

6b. Are there any potential impacts of varying contaminant burdens in sediment and prey on high trophic organisms, including humans?

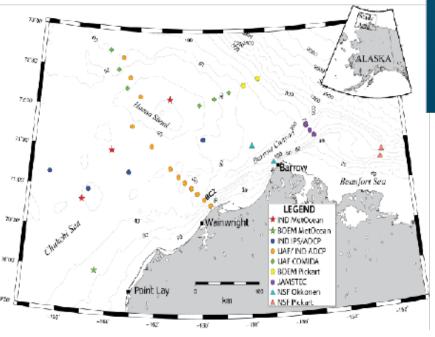




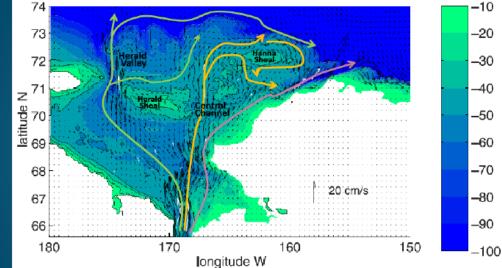

rom map provided by Tom Weingartner and Seth Danielson, University of Alaska Fairbanks).

Three Chukchi Sea cruises: 2008-2010

USGS Data Thanks to Tony Fischbach and Chad Jay



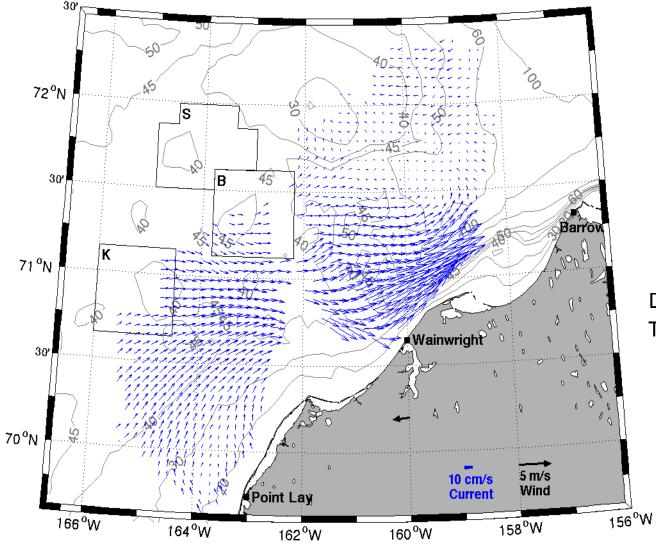
Example: interannual comparison benthic prey base and walrus movement via tracking (Jay, Fischbach and Grebmeier)



2012 Mooring Deployments for BOEM-COMIDA

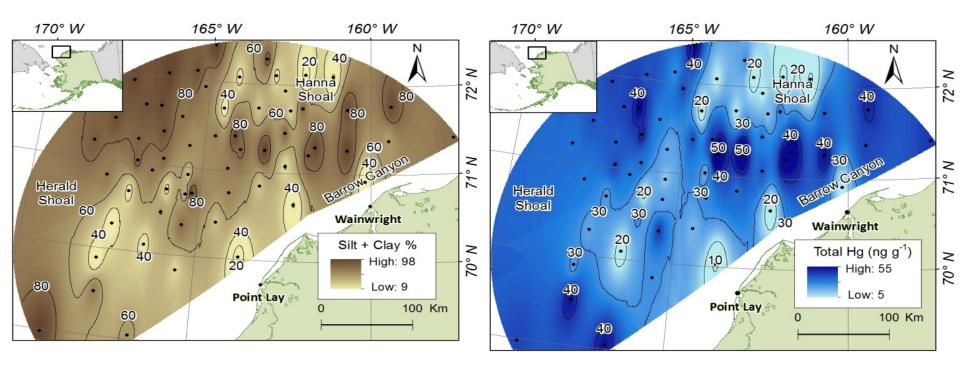
CHUKCHI WATER CURRENT STRUCTURE AT 27.5 m DEPTH

Annual mean horizontal velocity at 27.5 m depth as a function of bottom topography. Net flows denoted by colored arrows. From Spall (2007) and Weingartner (pers. comm)


> Thanks to Tom Weingartner and Ken Dunton for graphics

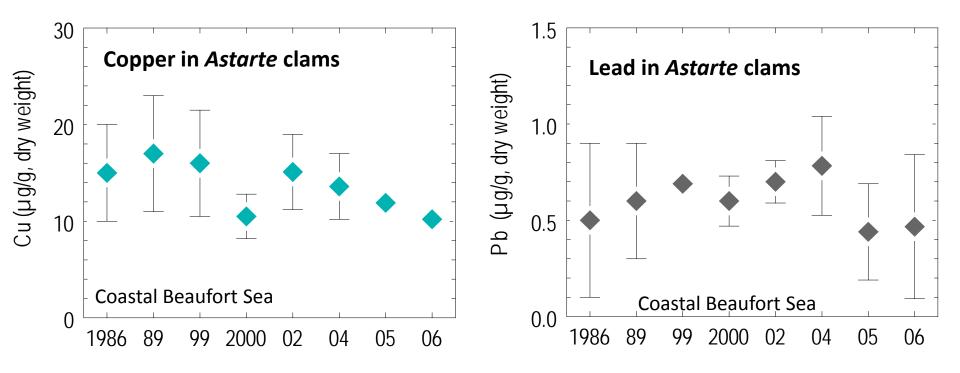
MEAN FLOW WHEN ACC IS NORTHEASTWARD

Coastal Radars: 2008 – 2011


August – October hourly 6km resolution ~100 – 150 km range (Available)

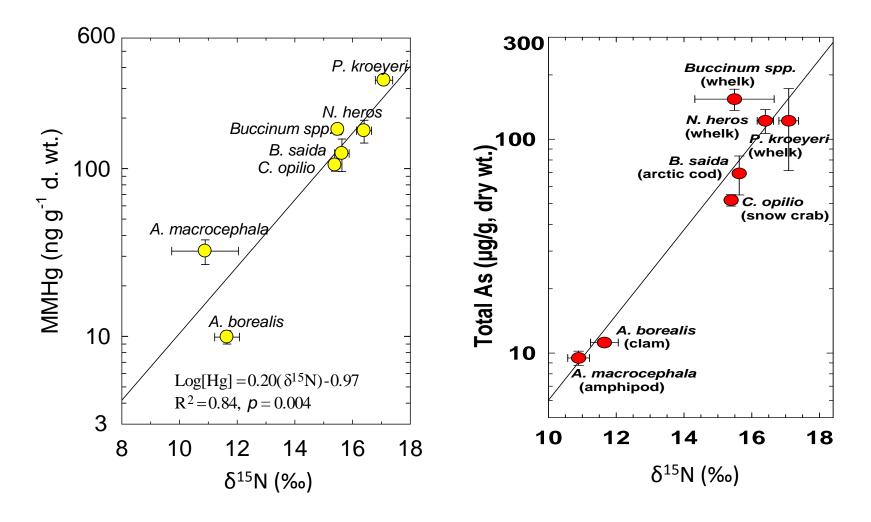
Data courtesy of Tom Weingartner

Synthesis data for contaminants in sediments will be displayed in GIS format

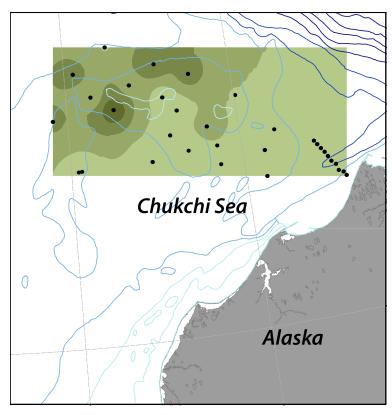


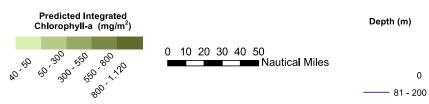
Location and sediment grain size will be used as key variables for describing contaminant distribution and identifying data gaps

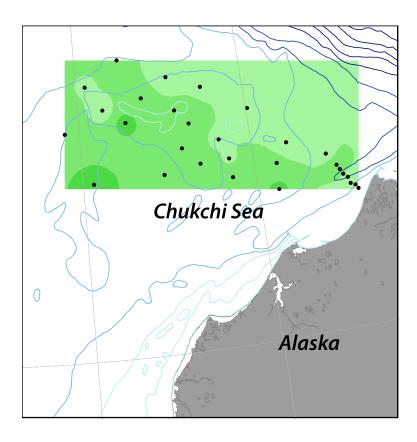
Synthesis data for contaminants in biota will be based on collection date and location and will displayed on graphs and maps.



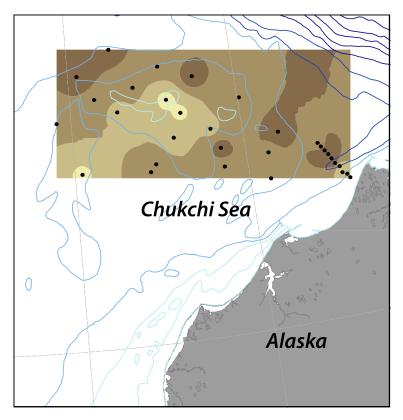
PacMARS-SOAR Open Workshop: January 20, 2013

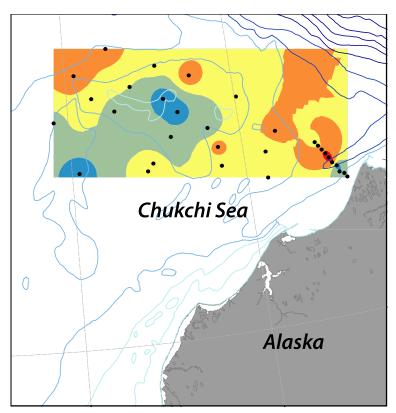

Synthesis for biota also will include food web bioaccumulation and biomagnification.

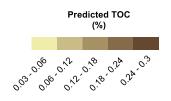


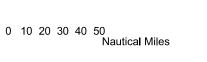


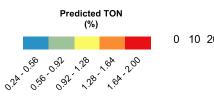
HLY1201





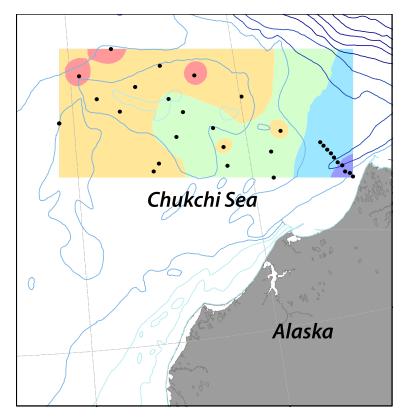


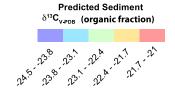

HLY1201


HLY1201

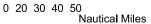
Depth (m)

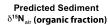
0 10 20 30 40 50 Nautical Miles



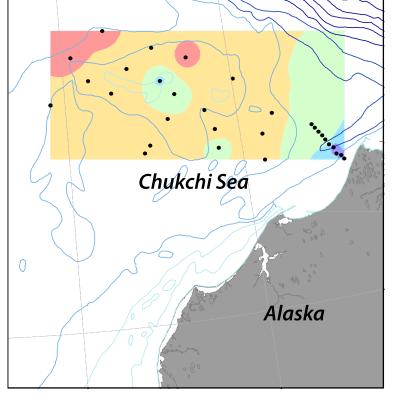

PacMARS-SOAR Open Workshop: January 20, 2013

Depth (m)




HLY1201

0 20 30 40 50 Nautical Miles



PacMARS-SOAR Open Workshop: January 20, 2013

Depth (m)

HLY1201

Data / Project	Description / Long Title	Theme (s)	Link	Evaluation Status & Investigators / Institution / Point of Contact
ANAMIDA	Beaufort Sea BOEM studies, 2004-2007	1-4,6	http://www.duxbury.b attelle.org/cANIMIDA /home/index.cfm	Trefry is lead, Dunton also
AKMAP	Alaska Monitoring and Assessment Program	1-6	http://www.dec.state.a k.us/water/wqsar/moni toring/AKMAP.htm	We will coordinate when able with Doug Dasher and others
AHDR	Arctic Human Development Report	5	http://www.svs.is/AH DR/	On-going; Yamin-Pasternak
ANWAP	Arctic Nuclear Waste Assessment Program	1-6	http://www.nsidc.co	Cooper, some data already archived
	Alaska Department of Fish and Game Subsistence Division Publications Searchable Database	4,5,6	http://www.adfg.alask a.gov/sf/publications/	Sue Moore is going to help with contacts. Yamin- Pasternak annotating Technical Papers for the coastal settlements in the PacMARS region
AON	Arctic Observing Network and the Advanced Cooperative Arctic Data and Information Service	1-4,6	http://www.aoncadis.o rg/	CBL, UAF, EOL, URI, WHOI are all funded investigators via NSF
AOOS	Alaska Ocean Observing System Arctic Assets	1-6	http://data.aoos.org/ma ps/arctic_assets/	McCammon is involved as a collaborator
ArcOD	Species presence or abundance, biomass, benthos, zooplankton, fish, ice	1-4,6	www.arcdiv.org, www.iobis.org	Bluhm, Ashjian, Dunton all are involved
Arctic Biodiversity Assessment	Arctic Biodiversity Assessment	2	http://www.caff.is/aba	Bluhm involved in writing of two chapters
Arctic Eis	Arctic Integrated Ecosystem Survey 2012- 2013 project, funded by BOEM Surface and bottom trawls ArcEIS	2,3,4,5,6	http://www.commerce. state.ak.us/dca/plannin g/cciap/ArcticEcosyste mIntegratedSurvey.ht m	UAF funded investigators will coordinate with: Franz Mueter Bob Lauth Mike Sigler
Arctic ERMA	ERMA (Environmental Response Management Application)	1-6	http://response.restorat ion.noaa.gov/maps- and-spatial- data/environmental- response- management- application- erma/arctic-erma.html	Large general effort, several PacMARS investigators likely to take advantage of this

Identify relevant data sets and evaluate them

Now a table ("Appendix 1")

Convert to an annotated narrative

Living documentcurrently 11 pages

C3O (Canada's Three Oceans) Data Sets

Sir Wilfrid Laurier cruises, July 1998-July 2012 and beyond (to 2017)

CTD-nutirents-O-18-chlorophyllbenthic data—grain size, C/N, sediment chlorophyll and biological community analysis

2006 Sir Wilfrid Laurier water column data

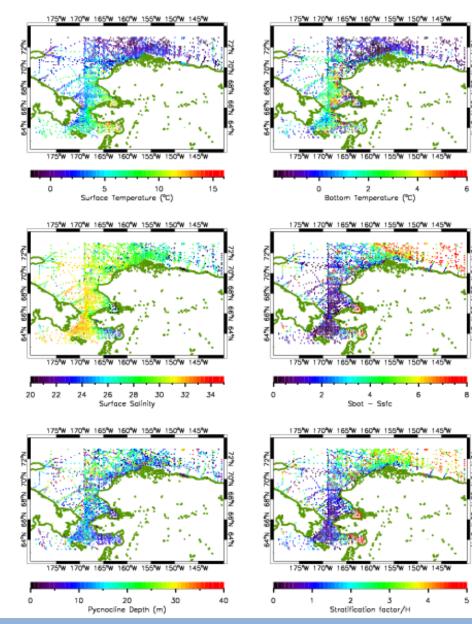
101	0.01.0	1 36 G	13 10 11		4 2			100%																Q. Ses	urch in She	it	
Hores	Layou	t: Tables	Charts	SmirtA	rt Fort	mulas	Oats B	eview																			14
tote			hori				gament			kentder							format							Celb		Theres	
	Fill +	Calibri (Body)	+ 12	· A- A		- 100 (a	be+ w	rap Text +	General				Vormal (Batt		Good:	Neutral	Cale	vistion .	Effech Cell	Equitaria	itiny	din .	· •	1. A	at	et -
. 2	Clear =	BIU								3 0.0	Condi		rest	- Linkert C	-	Note	Output	War	ning Text.	Heading 1	Headle	162 2	Harry T	Delete F	annat Th	iemes Ait.	
Al		000			na i complet	and the second second	and states of	100021 () ()		Colory Hotels	Torn	utting	ienti				-					1012	- maste	Provide 1	origination of the	and the	18.
. T		V	U.W.	x	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AL	Al	AK	AL	AM	AN	AD	AP	AQ.	AR	AS	AT	1 3
no	na	10	no	yes	yes	na	yes .	yes oxygen: Diss	Yes	yes	yes	yes .	Yes	10	yes	no tottle nave	110										
				ebars	deg C	PEXTERIOR	P55-78	mLA.	ing/m*3	%/metre	" NDDEs_oet	e scovey_cor	1 SODJOV_Set	1010	P\$5-78	SOLUCI YOM											-
				84	R4		84	54	84	R4	84	84	84		84												
				84:F7.1	84.59.4		84:59.4	84:18.3	R4:F7.3	84.67.1	84.F8.4	84:/8.4	R4:F8.4		R4:F9.4												
				-99	-96	9	.9	9 -99	-9	99	9-9.902+0	9.905+01	-9.90E+0	1		-99											
	RAW			FINAL	FINAL	FINAL	FINAL	RNAL	fINAL	FINAL	FINAL .	FINAL	FINAL	105				105									
	or Dc Date	Bottle		Pressure (d)	Temp (C) Fi								d StdDev Sal	F Salinity: Bot	t Salinity:	Bott diff CTD sa	ilir Botsal-da	ta Nut Samp I		N03-2	NO3 diff du		\$104-2	SIO4 diff di		P04-2	PO
ap.	ctd	ctd	etd	ettd	ctd	ctd	ctd	ctd	ctd	ctd	ctd	ctd	ctid						um/l	um/1		um/l	um/l		um/1	um/l	
0				215.975	6.344	4 3.388	5 34.005	1.28	0.1	0.5	0.000		0.000			-	-	-	36.0		-	62.0			2.6	4	-
2				150.374															33.3			96.			2.1		
9				124.03															34.4			5				1	
				99.29															33.2			0 50.1		4 0.			12
8				73.816											-		-	-	32.2			49.3			2.4		4
2				49.349											-				21.8			29.3			2.2		
				19.402															2			41.5			13		
				14.183	10.0748	9 3.491	4 31.69	4.006	2.95	37.	3 0.052	t 0.0056	0.028	6					28.3	24.9	•	38.0	8 4	2	1.5	4 1.9	18
				8.83															24.4			41.6			1.7		
				4.017													-	-	2			38.			1.7		
3				0.286															28.7			41.			2.9		
2				74.096															29.5			37.5			2.1		
2				49.204	7.6834	4 3.448	7 33.431	1.975	0.195	45.	0.163	8 0.0016	0.13	3					28.7			27.5	5		2.2	16	
9				39.423															25.1			10.0		7 bad rep	1.0		17 be
i				29.323															19.1			27.4			1.6		
р р				19.847 9.138															9.5	1. 1		193			1.3		
3				0.705																0.5	1	6.4		8	0.4		11
				999.709	3.4961	1 3.20	4 34,390	0.238	0.098	4	9 0.000	8 0.0001	0.000	4					43.3			77.5	9		3.5	15	
6				974.269															43.2			76.5			2.7		
1	1111			499.014 299.365													-		40.5			73.1			2.8		
				299.365															N N			45.1			2.5		4
1				150.457															29.6			38.				.1	
				109.717															27.3			32.4			1.5	14	
<u> </u>				74,895															10.1			10.3		8		1 1.1	4
-				49.436											-		-	-	5.1		-	3/			0.5		+
				10.168															1.1			43			0.4		+
1				0.031			7 32.181	6.233	1.463	27.3	0.001			,)		1.120	3		0.3	19	
				997.581											1	0.000	07		43.1			88.0		7	3.1		
				750.836															41.4			83.0			2.4		- 14
-				500.272 300.677														-	41.4		-	65.			2.0		-
1				200.597															31.0			50.5			2.3		
2				150.578	6.8363	3 3.406	3 33.742	2.952	0.093	45.1	0.014	0.0006	0.007	1					29.6			42.3	8		1.8	13	
2	11.1			100.317											111				21.8			27.5			1.5		
_				74.179															34.7			36.2		8	1.2		3
3				50.729													-		11.4			12.0			0.7		
2				9.30															0.1				6		0.4		
ip .				1.295			4 32.276	6.307	1.89	3									0.4			45			0.4		
0			sette Chemis	997.812		3 3.182	7 34.367	7 0.255	0.09			4 0.0002	0.000		8	-0.01	46		43.4			117.0	5		2.8	19	

Current efforts (Still) Cleaning up incomplete data sets

Back UAF Sikuliaq - CooperTER 2.2012.xls View	mext_marine_radiort_201	O404.pdf Quick Look	Depart Thu.	docx Grebmeier AMSS 12 Lee UPD.pptx Action	>>
Name	Date Created	Kind	Size		0
E Laurier2011	10/13/11 5:29 PM	Folder	2.7 MB	No.	
Laurier 2012	10/6/11 5:22 PM	Folder	1.7 MB		
Elaurier 2010	7/12/10 12:49 PM	Folder	1.22 GB		
E Laurier 2008	7/22/09 9:48 AM	Folder	98.2 MB		
E Laurier 2007	10/13/08 7:35 AM	Folder	1.97 GB		
E Laurier 2006	12/14/07 7:48 AM	Folder	2.8 MB		
E Laurier 2005	1/17/09 7:42 PM	Folder	11.8 MB		h
E Laurier 2004	12/19/08 5:19 PM	Folder	12.6 MB	2 CD LICD drive (Considion	5
Elaurier 2003		Folder	7.8 MB	2-GB USB drive (Canadian Arctic drive) and US data	
Elaurier 2002		Folder	7.3 MB	(on my laptop and now at	
Elaurier 2001		Folder	8.5 MB	EOL data archive, Boulder)	
E Laurier 2000		Folder	24.2 MB		
Laurier 98	4/5/12 12:01 PM	Folder	950 KB		
► 🚞 Laurier '99	4/5/12 12:02 PM	Folder	872 KB		4

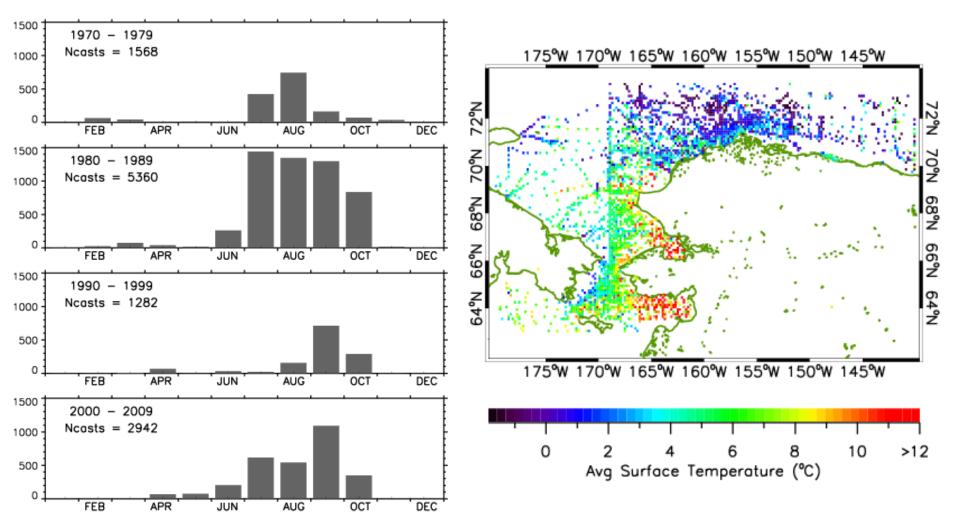
PacMARS-SOAR Open Workshop: January 20, 2013

BOEN


Possible Synthesis Expectations

- Cruise every July, very similar timing each year
 - Have chlorophyll concentrations and total inventories changed?
 - Need to assess water mass position (via nutrients?)
 - Tie-in with current and future DBO

JUN-OCT 1970-2009


Extracted Data from each CTD Cast

Data/Cruise ID Stn/Cast # YY MM DD HH MM Lat Lon Depth $\mathsf{T}_{\mathsf{sfc}}$ $\mathsf{T}_{\mathsf{deep}}$ T_{max} $\mathsf{Z}_{\mathsf{sfc}}$ $\mathsf{Z}_{\mathsf{deep}}$ Z_{Tmax} $\mathsf{S}_{\mathsf{sfc}}$ \mathbf{S}_{deep} $\mathbf{S}_{\mathrm{Tmax}}$ BV Z_{BV} **Stratification**

CTD spatio-temporal distribution

Awaiting CTD data from Chukchi lease area

Synthesis of Contaminants in Sediments and Biota

1. <u>Assimilate available data sets for the following chemical</u> <u>contaminants:</u>

Metals: Hg (including MeHg), Cd, As, Pb, Cu, Pb, Zn, ... Polycyclic Aromatic Hydrocarbons (PAH) Polychlorinated Biphenyls (PCBs) Pesticides? (DDT, chlordane)?

2. <u>Synthesis paper for Hg (MeHg), Cd, and PCBs (or PAH)</u> in sediments and biota (from plankton to marine mammals and birds) from the perspective of sources of the contaminant and pathways for delivery of those contaminants to target organisms.

Source

Pathway

Synthesis paper will focus on three contaminants of concern

Hg (MeHg), Cd, and PCBs (or PAH)

in sediments and biota (plankton to marine mammals and birds)

from the perspective of sources of the contaminant and pathways for delivery of that contaminant to target organisms.

For example:Hg from atmospheric and coastal sourcesCd from deep ocean water and riverine sourcesPCBs from atmospheric and some coastal sourcesPAH from atmospheric, fossil fuel and coastal sources

Knowledge gained from focusing on pathways may then be applied to other contaminants.

Summary

Introduction to PacMARS themes

What is synthesis? (Via Examples)

How will we get it done? (Approaches)

Examples of Possible End-Products

Outreach to Local Communities

Action by Agency Stakeholders

Future Field Research Efforts

